Performance Evaluation of Ultrasonic Atomization Process for Ethanol Separation and Recovery

نویسندگان

  • Yumi TANAKA
  • Yasushige MORI
  • Kazuo MATSUURA
چکیده

Ultrasonic atomization, a process of generating fine droplets through irradiation of high-frequency ultrasound to a gas–liquid interface from the liquid underneath, is applied to separating ethanol from its aqueous solution. Towards its practical use, the process of collecting in two cooling stages the ethanolenriched mist—generated via an ultrasonic atomizer (ultrasonic transducer operated at 2.4 MHz) with continuous feed of ethanol–water solution—using two cooling units in a series has been developed. The effects of operating conditions, especially cooling temperatures and gas flowrate, on ethanolenrichment and condensation characteristics are examined. It is found that the highly-enriched ethanol recovery could be attained in the 2nd stage by optimizing the 1stand 2nd-stage cooling temperatures (as moderate as 5°C and up to −10°C, respectively). Regarding the carrier-gas flowrate, ethanol-rich mist consisting of small-size droplets tends to be carried selectively in favor of lower gas flowrate. Nevertheless, the desired recovery of enriched ethanol—i.e., a highest possible value of the recovered quantity of ethanol as well as the recovery concentration itself—is expected to be obtained in the 2nd stage by raising the carrier-gas flowrate under the present operating conditions. While the proposed two-stage cooling process tends to collect rather an appreciable quantity of less-enriched ethanol solution in the 1st stage, it is the 2nd stage that assures the desired quality of enriched-ethanol recovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Solution Physical Properties on Separation Characteristics in Ultrasonic Atomization

When the high power ultrasound irradiates the liquid, small liquid droplets are generated from the liquid surface. This phenomenon is called as ultrasonic atomization [1]. Recently, it has been reported that ethanol is concentrated from the aqueous solution by ultrasonic atomization [2-4]. Since ultrasonic atomization scarcely accompanies the phase change, this is a great advantage comparing wi...

متن کامل

DMMP Sensing Performance of Undoped and Al Doped Nanocrystalline ZnO Thin Films Prepared by Ultrasonic Atomization and Pyrolysis Method

Highly textured undoped (pure) and Al doped ZnO nanocrystalline thin films prepared by ultrasonic atomization and pyrolysis method are reported in this paper. ZnCl2 water solution was converted into fine mist by ultrasonic atomizer (Gapusol 9001 RBI Meylan, France). The mist was pyrolyzed on the glass substrates in horizontal quartz reactor placed in furnace. The Structural and microstructural ...

متن کامل

Techno-economic evaluation of helium recovery from natural gas; A comparison between inorganic and polymeric membrane technology

Natural gas produced at high pressure (50-70 bar) is the only industrial source of helium (He). A membrane separation process may offer a more efficient production system with smaller footprint and lower operational cost than conventional cryogenic system. Inorganic membranes with high mechanical strength are known to exhibit good stability at high pressure. In this work, two inorganic membrane...

متن کامل

The Isolation of Organic Compounds using Organophilic Pervaporation Membranes

Organophilic membranes provide a method of recovering organic compounds by pervaporation, which exploits the selective transport of the organic phase. The main application is in the extraction of bio-alcohols from aqueous solution. The effect of membrane composition on performance in transporting alcohols and not water at improved rates is the focus of this review. In th...

متن کامل

Synthesis of Zinc Oxide Nanostructured Thin Film by Sol- Gel Method and Evaluation of Gas Sensing Properties

Ethanol (C2H6O) sensitivity of zinc oxide (ZnO) thin film has been studied in present work. Semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol–gel method and dip-coating technique. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding Tetra ethanol-amine.  The as-coated films were preheated at 150 ºC fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011